Parameter in the model
Parameter | Value | Description |
---|---|---|
ϕ_TRSA | 0.0683575 m^2 g^-1 | Reference root surface area per total biomass, used in nutrient stress function and maintenance costs for roots function, set to mean of community: |
ϕ_TAMC | 0.108293 | Reference arbuscular mycorriza colonisation rate per total biomass, used in nutrient stress function and maintenance costs for mycorrhizae function, set to mean of community: |
ϕ_sla | 0.008808 m^2 g^-1 | Reference specific leaf area, used in senescence function, set to mean of community: |
γ_RUEmax | 0.003 kg MJ^-1 | Maximum radiation use efficiency |
γ_RUE_k | 0.6 | Light extinction coefficient |
α_RUE_cwmH | 0.998592 | Reduction factor of radiation use efficiency at a height of 0.2 m ∈ [0, 1] |
β_LIG_H | NaN | Exponent that coontrols how strongly taller plants intercept more light than smaller plants |
α_WAT_rsa05 | 0.822698 | Water stress growth reduction factor for species with mean trait: |
β_WAT_rsa | 8.12609 | Slope of the logistic function that relates the plant available water to the water stress growth reduction factor |
δ_WAT_rsa | 1.60378 g m^-2 | Controls how strongly species differ in their water stress growth reduction from the mean response |
α_NUT_Nmax | 35.0 g kg^-1 | Maximum total soil nitrogen, on all the grassland sites of the Biodiversity Exploratories, the maximum total soil nitrogen is |
α_NUT_TSB | 5001.26 kg ha^-1 | Reference value, if the sum of the product of trait similarity and biomass of all species equals: |
α_NUT_maxadj | 10.0 | Maximum of the nutrient adjustment factor, fixed for calibration |
α_NUT_amc05 | 0.700429 | Nutrient stress based on arbuscular mycorriza colonisation growth reduction factor for species with mean trait: |
α_NUT_rsa05 | 0.959764 | Nutrient stress based on root surface area growth reduction factor for species with mean trait: |
β_NUT_rsa | 8.13689 | Slope of the logistic function that relates the plant available nutrients to the nutrient stress growth reduction factor based on root surface area & calibrated |
β_NUT_amc | 15.9892 | Slope of the logistic function that relates the plant available nutrients to the nutrient stress growth reduction factor based on arbuscular mycorriza colonisation |
δ_NUT_rsa | 10.3304 g m^-2 | Controls how strongly species differ in their nutrient stress growth reduction based on root surface area from the mean response |
δ_NUT_amc | 15.0 | Controls how strongly species differ in their nutrients stress growth reduction based on arbuscular mycorriza colonisation from the mean response & calibrated |
κ_ROOT_amc | 0.0723991 | Maximum growth reduction due to maintenance costs for mycorrhizae based on arbuscular mycorriza colonisation rate |
κ_ROOT_rsa | 0.00761945 | Maximum growth reduction due to maintenance costs for fine roots based on root surface area |
γ_RAD1 | 4.45e-6 ha MJ^-1 | Controls the steepness of the linear decrease in radiation use efficiency for high |
γ_RAD2 | 50000.0 MJ ha^-1 | Threshold value of |
ω_TEMP_T1 | 4.0 °C | Minimum temperature for growth |
ω_TEMP_T2 | 10.0 °C | Lower limit of optimum temperature for growth |
ω_TEMP_T3 | 20.0 °C | Upper limit of optimum temperature for growth |
ω_TEMP_T4 | 35.0 °C | Maximum temperature for growth |
ζ_SEA_ST1 | 787.414 °C | Threshold of the cumulative temperate since the beginning of the current year, the seasonality factor starts to decrease from |
ζ_SEA_ST2 | 1800.0 °C | Threshold of the cumulative temperate since the beginning of the current year, above which the seasonality factor is set to |
ζ_SEAmin | 0.987514 | Minimum value of the seasonal growth effect |
ζ_SEAmax | 2.44419 | Maximum value of the seasonal growth effect |
α_SEN | 0.0452193 | Basic senescence rate |
β_SEN_sla | 1.41955 | Controls the influence of the specific leaf area on the senescence rate |
ψ_SEN_ST1 | 1765.52 °C | Threshold of the cumulative temperate since the beginning of the current year above which the senescence begins to increase |
ψ_SEN_ST2 | 3000.0 °C | Threshold of the cumulative temperate since the beginning of the current year above which the senescence reaches the maximum senescence rate |
ψ_SENmax | 1.55784 | Maximum senescence rate |
β_GRZ_lnc | 0.578292 | Controls the influence of leaf nitrogen per leaf mass on grazer preference |
β_GRZ_H | 0.0563242 | Controls the influence of height on grazer preference |
η_GRZ | 2.0 | Scaling factor that controls at which biomass density additional feed is supplied by farmers, fixed for calibration |
κ_GRZ | 22.0 kg | Consumption of dry biomass per livestock and day |
ϵ_GRZ_minH | 0.05 m | Minimum height that is reachable by grazers |
β_SND_WHC | 0.5678 | Slope parameter relating the sand content to the soil water content at the water holding capacity |
β_SLT_WHC | 0.9228 | Slope parameter relating the silt content to the soil water content at the water holding capacity |
β_CLY_WHC | 0.9135 | Slope parameter relating the clay content to the soil water content at the water holding capacity |
β_OM_WHC | 0.6103 | Slope parameter relating the organic matter content to the soil water content at the water holding capacity |
β_BLK_WHC | -0.2696 cm^3 g^-1 | Slope parameter relating the bulk density to the soil water content at the water holding capacity |
β_SND_PWP | -0.0059 | Slope parameter relating the sand content to the soil water content at the permanent wilting point |
β_SLT_PWP | 0.1142 | Slope parameter relating the silt content to the soil water content at the permanent wilting point |
β_CLY_PWP | 0.5766 | Slope parameter relating the clay content to the soil water content at the permanent wilting point |
β_OM_PWP | 0.2228 | Slope parameter relating the organic matter content to the soil water content at the permanent wilting point |
β_BLK_PWP | 0.02671 cm^3 g^-1 | Slope parameter relating the bulk density to the soil water content at the permanent wilting point |
Which method uses a parameter?
How to change a parameter value
julia
import GrasslandTraitSim as sim
using Unitful
# default parameter values
sim.SimulationParameter()
# optimized/calibrated parameter values
sim.optim_parameter()
# you can change parameter values with keyword arguments, when you create the parameter object
p = sim.SimulationParameter(γ_RUE_k = 0.65, ϕ_TRSA = 0.05u"m^2 / g")
# or you can change the parameter values after the object is created
p.ϕ_TAMC = 0.1
p.ϕ_sla = 0.01u"m^2 / g"
p
┌──────────────┬───────────────────┐
│ Parameter │ Value │
├──────────────┼───────────────────┤
│ ϕ_TRSA │ 0.05 m^2 g^-1 │
│ ϕ_TAMC │ 0.1 │
│ ϕ_sla │ 0.01 m^2 g^-1 │
│ γ_RUEmax │ 0.003 kg MJ^-1 │
│ γ_RUE_k │ 0.65 │
│ α_RUE_cwmH │ 0.95 │
│ β_LIG_H │ 1.0 │
│ α_WAT_rsa05 │ 0.9 │
│ β_WAT_rsa │ 7.0 │
│ δ_WAT_rsa │ 20.0 g m^-2 │
│ α_NUT_Nmax │ 35.0 g kg^-1 │
│ α_NUT_TSB │ 15000.0 kg ha^-1 │
│ α_NUT_maxadj │ 10.0 │
│ α_NUT_amc05 │ 0.95 │
│ α_NUT_rsa05 │ 0.95 │
│ β_NUT_rsa │ 15.0 │
│ β_NUT_amc │ 15.0 │
│ δ_NUT_rsa │ 20.0 g m^-2 │
│ δ_NUT_amc │ 10.0 │
│ κ_ROOT_amc │ 0.02 │
│ κ_ROOT_rsa │ 0.01 │
│ γ_RAD1 │ 4.45e-6 ha MJ^-1 │
│ γ_RAD2 │ 50000.0 MJ ha^-1 │
│ ω_TEMP_T1 │ 4.0 °C │
│ ω_TEMP_T2 │ 10.0 °C │
│ ω_TEMP_T3 │ 20.0 °C │
│ ω_TEMP_T4 │ 35.0 °C │
│ ζ_SEA_ST1 │ 775.0 °C │
│ ζ_SEA_ST2 │ 1450.0 °C │
│ ζ_SEAmin │ 0.9 │
│ ζ_SEAmax │ 1.5 │
│ α_SEN │ 0.05 │
│ β_SEN_sla │ 1.5 │
│ ψ_SEN_ST1 │ 775.0 °C │
│ ψ_SEN_ST2 │ 3000.0 °C │
│ ψ_SENmax │ 1.5 │
│ β_GRZ_lnc │ 1.2 │
│ β_GRZ_H │ 2.0 │
│ η_GRZ │ 2.0 │
│ κ_GRZ │ 22.0 kg │
│ ϵ_GRZ_minH │ 0.05 m │
│ β_SND_WHC │ 0.5678 │
│ β_SLT_WHC │ 0.9228 │
│ β_CLY_WHC │ 0.9135 │
│ β_OM_WHC │ 0.6103 │
│ β_BLK_WHC │ -0.2696 cm^3 g^-1 │
│ β_SND_PWP │ -0.0059 │
│ β_SLT_PWP │ 0.1142 │
│ β_CLY_PWP │ 0.5766 │
│ β_OM_PWP │ 0.2228 │
│ β_BLK_PWP │ 0.02671 cm^3 g^-1 │
└──────────────┴───────────────────┘